Search results
Results From The WOW.Com Content Network
For any point, the abscissa is the first value (x coordinate), and the ordinate is the second value (y coordinate). In mathematics, the abscissa (/ æ b ˈ s ɪ s. ə /; plural abscissae or abscissas) and the ordinate are respectively the first and second coordinate of a point in a Cartesian coordinate system: [1] [2]
The standard orientation, where the xy-plane is horizontal and the z-axis points up (and the x- and the y-axis form a positively oriented two-dimensional coordinate system in the xy-plane if observed from above the xy-plane) is called right-handed or positive. 3D Cartesian coordinate handedness. The name derives from the right-hand rule.
When viewed at a position along the positive z-axis, the ¼ turn from the positive x-to the positive y-axis is counter-clockwise. For left-handed coordinates, the above description of the axes is the same, except using the left hand; and the ¼ turn is clockwise. Interchanging the labels of any two axes reverses the handedness.
The only difference is that Tait–Bryan angles represent rotations about three distinct axes (e.g. x-y-z, or x-y′-z″), while proper Euler angles use the same axis for both the first and third elemental rotations (e.g., z-x-z, or z-x′-z″). This implies a different definition for the line of nodes in the geometrical construction.
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
These are often numbered from 1st to 4th and denoted by Roman numerals: I (where the signs of the (x; y) coordinates are I (+; +), II (−; +), III (−; −), and IV (+; −). When the axes are drawn according to the mathematical custom, the numbering goes counter-clockwise starting from the upper right ("northeast") quadrant.
A point in the plane may be represented in homogeneous coordinates by a triple (x, y, z) where x/z and y/z are the Cartesian coordinates of the point. [10] This introduces an "extra" coordinate since only two are needed to specify a point on the plane, but this system is useful in that it represents any point on the projective plane without the ...
These quadrant labels are the same as used in 2D planar geometry, as seen from infinitely far to the "left", taking H and V to be the X-axis and Y-axis, respectively. The 3D object of interest is then placed into either quadrant I or III (equivalently, the position of the intersection line between the two planes is shifted), obtaining first ...