Ad
related to: center vertices and foci calculator calculus worksheet
Search results
Results From The WOW.Com Content Network
These are the three vertices A such that d(A, B) ≤ 3 for all vertices B. Each black vertex is a distance of at least 4 from some other vertex. The center (or Jordan center [1]) of a graph is the set of all vertices of minimum eccentricity, [2] that is, the set of all vertices u where the greatest distance d(u,v) to other vertices v is
In geometry, focuses or foci (/ ˈ f oʊ k aɪ /; sg.: focus) are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections , the four types of which are the circle , ellipse , parabola , and hyperbola .
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
Kiepert hyperbola, the unique conic which passes through a triangle's three vertices, its centroid, and its orthocenter; Jeřábek hyperbola, a rectangular hyperbola centered on a triangle's nine-point circle and passing through the triangle's three vertices as well as its circumcenter, orthocenter, and various other notable centers
In a hyperbola the following are concurrent: (1) a circle passing through the hyperbola's foci and centered at the hyperbola's center; (2) either of the lines that are tangent to the hyperbola at the vertices; and (3) either of the asymptotes of the hyperbola.
A d-claw in a graph is a set of d+1 vertices, one of which (the "center") is connected to the other d vertices, but the other d vertices are not connected to each other. A d-claw-free graph is a graph that does not have a d-claw subgraph. Consider the algorithm that starts with an empty set, and incrementally adds an arbitrary vertex to it as ...
A concave mirror with light rays Center of curvature. In geometry, the center of curvature of a curve is a point located at a distance from the curve equal to the radius of curvature lying on the curve normal vector. It is the point at infinity if the curvature is zero. The osculating circle to the curve is centered at the centre of curvature.
Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...