Ad
related to: euclidean 5 postulates explained in math
Search results
Results From The WOW.Com Content Network
If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions.
According to Eves (1963, pp. 384–5): By developing a postulate set for Euclidean geometry that does not depart too greatly in spirit from Euclid's own, and by employing a minimum of symbolism, Hilbert succeeded in convincing mathematicians to a far greater extent than had Pasch and Peano, of the purely hypothetico-deductive nature of geometry.
Parallel lines are the subject of Euclid's parallel postulate. [2] Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry. In some other geometries, such as hyperbolic geometry , lines can have analogous properties that are referred to as parallelism.
Antecedent of Playfair's axiom: a line and a point not on the line Consequent of Playfair's axiom: a second line, parallel to the first, passing through the point. In geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid (the parallel postulate):
Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.
Removing five axioms mentioning "plane" in an essential way, namely I.4–8, and modifying III.4 and IV.1 to omit mention of planes, yields an axiomatization of Euclidean plane geometry. Hilbert's axioms, unlike Tarski's axioms , do not constitute a first-order theory because the axioms V.1–2 cannot be expressed in first-order logic .