Search results
Results From The WOW.Com Content Network
Mode conversion occurs when a wave encounters an interface between materials of different impedances and the incident angle is not normal to the interface. [1] Thus, for example, if a longitudinal wave from a fluid (e.g., water or air) strikes a solid (e.g., steel plate), it is usually refracted and reflected as a function of the angle of incidence, but if some of the energy causes particle ...
The first six longitudinal modes of a plane-parallel cavity. A longitudinal mode of a resonant cavity is a particular standing wave pattern formed by waves confined in the cavity. The longitudinal modes correspond to the wavelengths of the wave which are reinforced by constructive interference after many reflections from the cavity's reflecting ...
The quarter wave or half wave voltage requirements increase with crystal aperture size, but the requirements can be reduced by lengthening the crystal. Two or more crystal can be incorporated into a transverse Pockels cell. One reason is to reduce the voltage requirement by extending the overall length of the Pockels cell.
"Longitudinal waves" and "transverse waves" have been abbreviated by some authors as "L-waves" and "T-waves", respectively, for their own convenience. [1] While these two abbreviations have specific meanings in seismology (L-wave for Love wave [2] or long wave [3]) and electrocardiography (see T wave), some authors chose to use "ℓ-waves" (lowercase 'L') and "t-waves" instead, although they ...
The basic principles behind optical waveguides can be described using the concepts of geometrical or ray optics, as illustrated in the diagram. Light passing into a medium with higher refractive index bends toward the normal by the process of refraction (Figure a.). Take, for example, light passing from air into glass.
Position of a point in space, not necessarily a point on the wave profile or any line of propagation d, r: m [L] Wave profile displacement Along propagation direction, distance travelled (path length) by one wave from the source point r 0 to any point in space d (for longitudinal or transverse waves) L, d, r
The uniform spacing of the wires makes them a transmission line, conducting waves at a constant speed very close to the speed of light. [10] One end of the rods is connected to the source of RF power, such as the output of a radio transmitter. At the other end the rods are connected together with a conductive bar between them.
Generally, a wave is reflected back along the line in the opposite direction. When the reflected wave reaches the source, it is reflected yet again, adding to the transmitted wave and changing the ratio of the voltage and current at the input, causing the voltage-current ratio to no longer equal the characteristic impedance.