Search results
Results From The WOW.Com Content Network
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
The incidence matrix for a graph defines one possible linear transformation: () between the edge space and the vertex space of .The incidence matrix of , as a linear transformation, maps each edge to its two incident vertices.
A drawing of a graph with 6 vertices and 7 edges. In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called arcs, links or lines).
A graceful labeling; vertex labels are in black and edge labels in red. A graph is known as graceful if its vertices are labeled from 0 to | E |, the size of the graph, and if this vertex labeling induces an edge labeling from 1 to | E |. For any edge e, the label of e is the positive difference between the labels of the two vertices incident ...
A directed graph is strongly connected or strong if it contains a directed path from x to y (and from y to x) for every pair of vertices (x, y). The strong components are the maximal strongly connected subgraphs. A connected rooted graph (or flow graph) is one where there exists a directed path to every vertex from a distinguished root vertex.
1. Information associated with a vertex or edge of a graph. A labeled graph is a graph whose vertices or edges have labels. The terms vertex-labeled or edge-labeled may be used to specify which objects of a graph have labels. Graph labeling refers to several different problems of assigning labels to graphs subject to certain constraints.
Every vertex of this graph has an even degree. Therefore, this is an Eulerian graph. Following the edges in alphabetical order gives an Eulerian circuit/cycle. In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting