Ads
related to: convex lenses uses
Search results
Results From The WOW.Com Content Network
A watch with a plano-convex lens over the date indicator. A single convex lens mounted in a frame with a handle or stand is a magnifying glass. Lenses are used as prosthetics for the correction of refractive errors such as myopia, hypermetropia, presbyopia, and astigmatism. (See corrective lens, contact lens, eyeglasses, intraocular lens.)
A convex mirror diagram showing the focus, focal length, centre of curvature, principal axis, etc. A convex mirror or diverging mirror is a curved mirror in which the reflective surface bulges towards the light source. [1] Convex mirrors reflect light outwards, therefore they are not used to focus light.
The basic scheme is that the primary light-gathering element, the objective (1) (the convex lens or concave mirror used to gather the incoming light), focuses that light from the distant object (4) to a focal plane where it forms a real image (5). This image may be recorded or viewed through an eyepiece (2), which acts like a magnifying glass.
A magnifying glass is a convex lens that is used to produce a magnified image of an object. The lens is usually mounted in a frame with a handle. A magnifying glass can be used to focus light, such as to concentrate the Sun's radiation to create a hot spot at the focus for fire starting. A plastic Fresnel lens sold as a TV-screen magnifier
The use of a convex lens to form an enlarged/magnified image was most likely described in Ptolemy's Optics (which survives only in a poor Arabic translation). Ptolemy's description of lenses was commented upon and improved by Ibn Sahl (10th century) and most notably by Alhazen ( Book of Optics , c. 1021 ).
Different kinds of camera lenses, including wide angle, telephoto and speciality. A camera lens (also known as photographic lens or photographic objective) is an optical lens or assembly of lenses (compound lens) used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.
The concave (inner) surface of the lens is then polished with some fine abrasive paste, oil, and a small polyester cotton ball turned at high speeds. To hold the delicate lens in reverse manner, wax is used as an adhesive. The lens' convex (outer) surface is thus cut and polished by the same process.
These lenses use some form of the cassegrain design which greatly reduces the physical length of the optical assembly, partly by folding the optical path, but mostly through the telephoto effect of the convex secondary mirror which multiplies the focal length many times (up to 4 to 5 times). [12]