Ad
related to: venn diagram to illust number line conversion
Search results
Results From The WOW.Com Content Network
Information diagrams have also been applied to specific problems such as for displaying the information theoretic similarity between sets of ontological terms. [ 3 ] Venn diagram showing additive and subtractive relationships among various information measures associated with correlated variables X and Y .
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
These diagrams depict elements as points in the plane, and sets as regions inside closed curves. A Venn diagram consists of multiple overlapping closed curves, usually circles, each representing a set. The points inside a curve labelled S represent elements of the set S, while points outside the boundary represent elements not in the set S.
Venn diagram showing the union of sets A and B as everything not in white. In combinatorics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. [3] Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language.
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
R-diagrams are also used in set theory, as an alternative to Venn diagrams. In set theory, each line represents a set instead of a logical statement; A replaces p and B replaces q. When used for sets, a dot above the line represents inclusion, where a dot below represents exclusion.
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.