Search results
Results From The WOW.Com Content Network
Factorization of polynomials. In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of ...
First stated in. 1929; 95 years ago (1929) In elementary algebra, FOIL is a mnemonic for the standard method of multiplying two binomials [1] —hence the method may be referred to as the FOIL method. The word FOIL is an acronym for the four terms of the product: F irst ("first" terms of each binomial are multiplied together) O uter ("outside ...
The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...
The factor theorem is also used to remove known zeros from a polynomial while leaving all unknown zeros intact, thus producing a lower degree polynomial whose zeros may be easier to find. Abstractly, the method is as follows: [3] Deduce the candidate of zero of the polynomial from its leading coefficient and constant term .
In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967. It was the dominant algorithm for solving the ...
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2) (x + 2) is a polynomial ...
Square-free factorization. The algorithm determines a square-free factorization for polynomials whose coefficients come from the finite field Fq of order q = pm with p a prime. This algorithm firstly determines the derivative and then computes the gcd of the polynomial and its derivative. If it is not one then the gcd is again divided into the ...
The difference of two squares is used to find the linear factors of the sum of two squares, using complex number coefficients. For example, the complex roots of can be found using difference of two squares: (since ) Therefore, the linear factors are and . Since the two factors found by this method are complex conjugates, we can use this in ...