Search results
Results From The WOW.Com Content Network
An arrow from x to y indicates that the relation holds between x and y. The relation is represented by the set { (a,a), (a,b), (a,d), (b,a), (b,d), (c,b), (d,c), (d,d) } of ordered pairs. In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a ...
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The degree of dependence between variables X and Y does not depend on the scale on which the variables are expressed. That is, if we are analyzing the relationship between X and Y, most correlation measures are unaffected by transforming X to a + bX and Y to c + dY, where a, b, c, and d are constants (b and d being positive).
A sigmoid function is a function whose graph follows the logistic function. It is defined by the formula: σ {\displaystyle \sigma (x)= {\frac {1} {1+e^ {-x}}}= {\frac {e^ {x}} {1+e^ {x}}}=1-\sigma (-x).} In many fields, especially in the context of artificial neural networks, the term "sigmoid function" is correctly recognized as a synonym for ...
Reversal of the order of elements of a binary relation. In mathematics, the converse of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and are sets and is a relation from to then is the ...
Identity function. In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unchanged. That is, when f is the identity function, the equality f(x) = x is true for all values of x to which f can be applied.
t. e. In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. [1] The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity.
The above procedure now is reversed to find the form of the function F(x) using its (assumed) known log–log plot. To find the function F, pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph.