Search results
Results From The WOW.Com Content Network
Some calculators have a mod() function button, and many programming languages have a similar function, expressed as mod(a, n), for example. Some also support expressions that use "%", "mod", or "Mod" as a modulo or remainder operator, such as a % n or a mod n. For environments lacking a similar function, any of the three definitions above can ...
Consequently, (a mod m) denotes generally the unique integer k such that 0 ≤ k < m and k ≡ a (mod m); it is called the residue of a modulo m. In particular, (a mod m) = (b mod m) is equivalent to a ≡ b (mod m), and this explains why "=" is often used instead of "≡" in this context.
The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...
This algorithm makes use of the identity (a ⋅ b) mod m = [(a mod m) ⋅ (b mod m)] mod m. The modified algorithm is: Inputs An integer b (base), integer e (exponent), and a positive integer m (modulus) Outputs The modular exponent c where c = b e mod m. Initialise c = 1 and loop variable e′ = 0; While e′ < e do Increment e′ by 1 ...
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Software calculators that simulate hand-held, immediate execution calculators do not use the full power of the computer: "A computer is a far more powerful device than a hand-held calculator, and thus it is illogical and limiting to duplicate hand-held calculators on a computer."