When.com Web Search

  1. Ads

    related to: the distributive law in maths problems

Search results

  1. Results From The WOW.Com Content Network
  2. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra. For example, in elementary arithmetic , one has 2 ⋅ ( 1 + 3 ) = ( 2 ⋅ 1 ) + ( 2 ⋅ 3 ) . {\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}

  3. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.

  4. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    In mathematics and computer programming, the order of operations is a collection of rules that reflect conventions about which operations to perform first in order to evaluate a given mathematical expression. These rules are formalized with a ranking of the operations.

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  6. Distribution - Wikipedia

    en.wikipedia.org/wiki/Distribution

    Distributivity, a property of binary operations that generalises the distributive law from elementary algebra; Distribution (number theory) Distribution problems, a common type of problems in combinatorics where the goal is to enumerate the number of possible distributions of m objects to n recipients, subject to various conditions; see ...

  7. Distributivity (order theory) - Wikipedia

    en.wikipedia.org/wiki/Distributivity_(order_theory)

    An element x is called a dual distributive element if ∀y,z: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). In a distributive lattice, every element is of course both distributive and dual distributive. In a non-distributive lattice, there may be elements that are distributive, but not dual distributive (and vice versa).