When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 7a – Proof of the law of cosines for acute angle γ by "cutting and pasting". Fig. 7b – Proof of the law of cosines for obtuse angle γ by "cutting and pasting". One can also prove the law of cosines by calculating areas. The change of sign as the angle γ becomes obtuse makes a case distinction necessary. Recall that

  3. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    If the law of cosines is used to solve for c, the necessity of inverting the cosine magnifies rounding errors when c is small. In this case, the alternative formulation of the law of haversines is preferable. [3] A variation on the law of cosines, the second spherical law of cosines, [4] (also called the cosine rule for angles [1]) states:

  4. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    There are many ways of deriving the fundamental cosine and sine rules and the other rules developed in the following sections. For example, Todhunter [1] gives two proofs of the cosine rule (Articles 37 and 60) and two proofs of the sine rule (Articles 40 and 42). The page on Spherical law of cosines gives

  5. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides.

  6. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Download as PDF; Printable version; ... Proof: Follows immediately from Ptolemy's theorem: ... The law of cosines. Corollary 2: the law of cosines ...

  7. Hyperbolic law of cosines - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_law_of_cosines

    In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. [1] It can also be related to the relativistic velocity addition formula. [2] [3]

  8. Jamshid al-Kashi - Wikipedia

    en.wikipedia.org/wiki/Jamshid_al-Kashi

    In French, the law of cosines is named Théorème d'Al-Kashi (Theorem of Al-Kashi), as al-Kashi was the first to provide an explicit statement of the law of cosines in a form suitable for triangulation. [15] His other work is al-Risāla al-muhītīyya or "The Treatise on the Circumference". [16]

  9. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    In modern times the law of tangents may have better numerical properties than the law of cosines: If γ is small, and a and b are almost equal, then an application of the law of cosines leads to a subtraction of almost equal values, incurring catastrophic cancellation.