Search results
Results From The WOW.Com Content Network
The Poisson distribution is often used to model the number of rare event occurrences during a fixed period of time. It is characterized by a single parameter, λ, which is both the mean and variance of the distribution. The discrete Weibull distribution, on the other hand, is more flexible and can handle both over- and under-dispersion in count ...
The distribution of a random variable that is defined as the minimum of several random variables, each having a different Weibull distribution, is a poly-Weibull distribution. The Weibull distribution was first applied by Rosin & Rammler (1933) to describe particle size distributions.
The geometric distribution, a discrete distribution which describes the number of attempts needed to get the first success in a series of independent Bernoulli trials, or alternatively only the number of losses before the first success (i.e. one less). The Hermite distribution; The logarithmic (series) distribution; The mixed Poisson distribution
In the four survival function graphs shown above, the shape of the survival function is defined by a particular probability distribution: survival function 1 is defined by an exponential distribution, 2 is defined by a Weibull distribution, 3 is defined by a log-logistic distribution, and 4 is defined by another Weibull distribution.
In probability theory and statistics, the generalized extreme value (GEV) distribution [2] is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions.
Discrete Weibull distribution; Discrete-stable distribution; Displaced Poisson distribution; Dyadic distribution; E. Ewens's sampling formula; Exponential family;
The Fréchet distribution, also known as inverse Weibull distribution, [2] [3] is a special case of the generalized extreme value distribution. It has the cumulative distribution function ( ) = > . where α > 0 is a shape parameter.
The distribution is named after Lord Rayleigh (/ ˈ r eɪ l i /). [1] A Rayleigh distribution is often observed when the overall magnitude of a vector in the plane is related to its directional components. One example where the Rayleigh distribution naturally arises is when wind velocity is analyzed in two dimensions.