Search results
Results From The WOW.Com Content Network
Especially whole numbers larger than 2 53 - 1, which is the largest number JavaScript can reliably represent with the Number primitive and represented by the Number.MAX_SAFE_INTEGER constant. When dividing BigInts, the results are truncated .
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
For division to always yield one number rather than an integer quotient plus a remainder, the natural numbers must be extended to rational numbers or real numbers. In these enlarged number systems, division is the inverse operation to multiplication, that is a = c / b means a × b = c, as long as b is not zero.
Given an integer a and a non-zero integer d, it can be shown that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < | d |. The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see division algorithm.)
This page was last edited on 28 January 2013, at 00:29 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...
It has two definitions: either the integer part of a division (in the case of Euclidean division) [2] or a fraction or ratio (in the case of a general division). For example, when dividing 20 (the dividend ) by 3 (the divisor ), the quotient is 6 (with a remainder of 2) in the first sense and 6 2 3 = 6.66... {\displaystyle 6{\tfrac {2}{3}}=6.66 ...