When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    Here dynamic viscosity is denoted by and kinematic viscosity by . The formulas given ... Chemical formula A (mPa·s) B (K) Temp. range (K)

  3. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir George Gabriel Stokes. [29] In U.S. usage, stoke is sometimes used as the singular form.

  4. List of viscosities - Wikipedia

    en.wikipedia.org/wiki/List_of_viscosities

    Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.

  5. Schmidt number - Wikipedia

    en.wikipedia.org/wiki/Schmidt_number

    The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).

  6. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.

  7. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    μ is the dynamic viscosity of the fluid (Pa·s or N·s/m 2 or kg/(m·s)) ν is the kinematic viscosity of the fluid (m 2 /s). The Brezina equation. The Reynolds number can be defined for several different situations where a fluid is in relative motion to a surface.

  8. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/(m·s)); ν is the kinematic viscosity of the fluid, ν = ⁠ μ / ρ ⁠ (m 2 /s); ρ is the density of the fluid (kg/m 3). For such systems, laminar flow occurs when the Reynolds number is below a critical value of approximately 2,040, though the transition range is typically ...

  9. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    is the dynamic viscosity, i.e., a measure of the fluids' resistance to shearing flows L {\displaystyle L} is the characteristic length of the system ν = μ ρ {\displaystyle \nu ={\frac {\mu }{\rho }}} is the kinematic viscosity – it measures the ratio of dynamic viscosity to the density of the fluid