Ad
related to: pump head temperature calculator
Search results
Results From The WOW.Com Content Network
Thermodynamic pump testing is a form of pump testing where only the temperature rise, power consumed, and differential pressure need to be measured to find the efficiency of a pump. These measurements are typically made with insertion temperature probes and pressure probes fitted to tapping points on the pump's inlet and outlet. [ 1 ]
Example Number 3: A well or bore running at 70 degrees Celsius (158F) with an operating level of 5 metres below the intake, minus a 2 metre friction loss into pump (pipe loss), minus the NPSH R curve (say 2.4 metres) of the pre-designed pump, minus a temperature loss of 3 metres/10 feet = an NPSH A (available) of (negative) -12.4 metres.
The static head of a pump is the maximum height (pressure) it can deliver. The capability of the pump at a certain RPM can be read from its Q-H curve (flow vs. height). Head is useful in specifying centrifugal pumps because their pumping characteristics tend to be independent of the fluid's density. There are generally four types of head:
With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
Pressure head is a component of hydraulic head, in which it is combined with elevation head. When considering dynamic (flowing) systems, there is a third term needed: velocity head. Thus, the three terms of velocity head, elevation head, and pressure head appear in the head equation derived from the Bernoulli equation for incompressible fluids:
Darcy–Weisbach equation calculator; Pipe pressure drop calculator Archived 2019-07-13 at the Wayback Machine for single phase flows. Pipe pressure drop calculator for two phase flows. Archived 2019-07-13 at the Wayback Machine; Open source pipe pressure drop calculator. Web application with pressure drop calculations for pipes and ducts
The following parameters are characteristic for the circulating pumps: capacity Q, pump pressure ∆p (delivery head ∆H), energy consumption P with pump unit efficiency η, impeller rotational speed n, NPSH and sound level L. In practice, the graphical relationship between the values Q, ∆ p(∆H), P and η is used.