When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  3. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has eight vertices.

  4. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    However, there exist fast algorithms for this problem: for a graph with n vertices, it is possible to determine in time O(n) (linear time) whether the graph may be planar or not (see planarity testing). For a simple, connected, planar graph with v vertices and e edges and f faces, the following simple conditions hold for v ≥ 3: Theorem 1. e ...

  5. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.

  6. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    The number of vertices and edges has remained the same, but the number of faces has been reduced by 1. Therefore, proving Euler's formula for the polyhedron reduces to proving V − E + F = 1 {\displaystyle \ V-E+F=1\ } for this deformed, planar object.

  7. 5-polytope - Wikipedia

    en.wikipedia.org/wiki/5-polytope

    A 5-polytope is a closed five-dimensional figure with vertices, edges, faces, and cells, and 4-faces. A vertex is a point where five or more edges meet. An edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet. A cell is a polyhedron, and a 4-face is a 4-polytope. Furthermore, the following ...

  8. Eberhard's theorem - Wikipedia

    en.wikipedia.org/wiki/Eberhard's_theorem

    Since the numbers of angles and sides of the faces are given, one can calculate the three numbers (the total number of vertices), (the total number of edges), and (the total number of faces), by summing over all faces and multiplying by an appropriate factor: [1]

  9. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    It comprises vertices (corner points), edges, faces and cells. A cell is the three-dimensional analogue of a face, and is therefore a polyhedron . Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces.