Search results
Results From The WOW.Com Content Network
Brightness temperature or radiance temperature is a measure of the intensity of electromagnetic energy coming from a source. [1] In particular, it is the temperature at which a black body would have to be in order to duplicate the observed intensity of a grey body object at a frequency ν {\displaystyle \nu } . [ 2 ]
The relationship is represented by the equation: = where L ⊙ and M ⊙ are the luminosity and mass of the Sun and 1 < a < 6. [2] The value a = 3.5 is commonly used for main-sequence stars. [ 3 ] This equation and the usual value of a = 3.5 only applies to main-sequence stars with masses 2 M ⊙ < M < 55 M ⊙ and does not apply to red giants ...
The Classical Cepheid period-luminosity relation has been calibrated by many astronomers throughout the twentieth century, beginning with Hertzsprung. [17] Calibrating the period-luminosity relation has been problematic; however, a firm Galactic calibration was established by Benedict et al. 2007 using precise HST parallaxes for 10 nearby ...
A classical Cepheid's luminosity is directly related to its period of variation. The longer the pulsation period, the more luminous the star. The period-luminosity relation for classical Cepheids was discovered in 1908 by Henrietta Swan Leavitt in an investigation of thousands of variable stars in the Magellanic Clouds. [23]
In astrophysics, the Phillips relationship is the relationship between the peak luminosity of a Type Ia supernova and the speed of luminosity evolution after maximum light. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii [ ru ] in the ...
In 1926, in his book The Internal Constitution of the Stars he explained the physics of how stars fit on the diagram. [15] The paper anticipated the later discovery of nuclear fusion and correctly proposed that the star's source of power was the combination of hydrogen into helium, liberating enormous energy.
While apparent magnitude is a measure of the brightness of an object as seen by a particular observer, absolute magnitude is a measure of the intrinsic brightness of an object. Flux decreases with distance according to an inverse-square law , so the apparent magnitude of a star depends on both its absolute brightness and its distance (and any ...
In astronomy, the apparent brightness of a star, or any other luminous object, is called the apparent magnitude. The apparent magnitude depends on the intrinsic brightness (also called absolute magnitude) of the object and its distance. If all stars had the same luminosity, the distance from Earth to a particular star could be easily determined.