Search results
Results From The WOW.Com Content Network
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work and/or mass flow.
Adiabatic (from Gr. ἀ negative + διάβασις passage; transference) refers to any process that occurs without heat transfer. This concept is used in many areas of physics and engineering. This concept is used in many areas of physics and engineering.
A closed system may exchange heat, experience forces, and exert forces, but does not exchange matter. An open system can interact with its surroundings by exchanging both matter and energy. The physical condition of a thermodynamic system at a given time is described by its state , which can be specified by the values of a set of thermodynamic ...
An adiabatic process is a process in which there is no matter or heat transfer, because a thermally insulating wall separates the system from its surroundings. For the process to be natural, either (a) work must be done on the system at a finite rate, so that the internal energy of the system increases; the entropy of the system increases even ...
Firstly, thermo-("of heat"; used in words such as thermometer) can be traced back to the root θέρμη therme, meaning "heat". Secondly, the word dynamics ("science of force [or power]") [22] can be traced back to the root δύναμις dynamis, meaning "power". [23] In 1849, the adjective thermo-dynamic is used by William Thomson. [24] [25 ...
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).
In atmospheric science, equivalent temperature is the temperature of air in a parcel from which all the water vapor has been extracted by an adiabatic process. Air contains water vapor that has been evaporated into it from liquid sources (lakes, sea, etc...). The energy needed to do that has been taken from the air.
In thermodynamics, an adiabatic wall between two thermodynamic systems does not allow heat or chemical substances to pass across it, in other words there is no heat transfer or mass transfer. In theoretical investigations, it is sometimes assumed that one of the two systems is the surroundings of the other.