When.com Web Search

  1. Ad

    related to: heat loss by radiation formula worksheet pdf printable pages

Search results

  1. Results From The WOW.Com Content Network
  2. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    In the study of heat transfer, Schwarzschild's equation[1][2][3] is used to calculate radiative transfer (energy transfer via electromagnetic radiation) through a medium in local thermodynamic equilibrium that both absorbs and emits radiation. The incremental change in spectral intensity, [4] (dIλ, [W/sr/m 2 /μm]) at a given wavelength as ...

  3. Radiative cooling - Wikipedia

    en.wikipedia.org/wiki/Radiative_cooling

    Radiative cooling. In the study of heat transfer, radiative cooling[1][2] is the process by which a body loses heat by thermal radiation. As Planck's law describes, every physical body spontaneously and continuously emits electromagnetic radiation.

  4. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    Radiative transfer. Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically.

  5. Cooling load temperature difference calculation method

    en.wikipedia.org/wiki/Cooling_load_temperature...

    The equations for the use of the data retrieved from these tables are very simple. Q= heat gain, usually heat gain per unit time. A= surface area. U= Overall heat transfer coefficient. CLTD= cooling load temperature difference. SCL= solar cooling load factor. CLF= cooling load factor. SC= shading coefficient.

  6. Earth's internal heat budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_internal_heat_budget

    The largest values of heat flux coincide with mid-ocean ridges, and the smallest values of heat flux occur in stable continental interiors. Earth's internal heat budget is fundamental to the thermal history of the Earth. The flow heat from Earth's interior to the surface is estimated at 47±2 terawatts (TW) [1] and comes from two main sources ...

  7. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    Newton's law of cooling. In the study of heat transfer, Newton's law of cooling is a physical law which states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its environment. The law is frequently qualified to include the condition that the temperature difference is small ...

  8. Sol-air temperature - Wikipedia

    en.wikipedia.org/wiki/Sol-air_temperature

    Sol-air temperature. Sol-air temperature (Tsol-air) is a variable used to calculate cooling load of a building and determine the total heat gain through exterior surfaces. It is an improvement over: Where: The above equation only takes into account the temperature differences and ignores two important parameters, being 1) solar radiative flux ...

  9. Gebhart factor - Wikipedia

    en.wikipedia.org/wiki/Gebhart_factor

    The Gebhart factors are used in radiative heat transfer, it is a means to describe the ratio of radiation absorbed by any other surface versus the total emitted radiation from given surface. As such, it becomes the radiation exchange factor between a number of surfaces. The Gebhart factors calculation method is supported in several radiation ...