Search results
Results From The WOW.Com Content Network
Lattice-based cryptographic constructions hold a great promise for public-key post-quantum cryptography. [38] Indeed, the main alternative forms of public-key cryptography are schemes based on the hardness of factoring and related problems and schemes based on the hardness of the discrete logarithm and related problems.
In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices.The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic ...
Lattice-based cryptography began in 1996 from a seminal work by Miklós Ajtai [1] who presented a family of one-way functions based on SIS problem. He showed that it is secure in an average case if the shortest vector problem (where = for some constant >) is hard in a worst-case scenario. Average case problems are the problems that are hard to ...
IEEE P1363 is an Institute of Electrical and Electronics Engineers (IEEE) standardization project for public-key cryptography. It includes specifications for: Traditional public-key cryptography (IEEE Std 1363-2000 and 1363a-2004) Lattice-based public-key cryptography (IEEE Std 1363.1-2008) Password-based public-key cryptography (IEEE Std 1363. ...
In cryptography, learning with errors (LWE) is a mathematical problem that is widely used to create secure encryption algorithms. [1] It is based on the idea of representing secret information as a set of equations with errors. In other words, LWE is a way to hide the value of a secret by introducing noise to it. [2]
Craig Gentry, using lattice-based cryptography, described the first plausible construction for a fully homomorphic encryption scheme in 2009. [9] Gentry's scheme supports both addition and multiplication operations on ciphertexts, from which it is possible to construct circuits for performing arbitrary computation.
For quantum computers, Factoring and Discrete Log problems are easy, but lattice problems are conjectured to be hard. [13] This makes some lattice-based cryptosystems candidates for post-quantum cryptography. Some cryptosystems that rely on hardness of lattice problems include: NTRU (both NTRUEncrypt and NTRUSign)
NTRU is an open-source public-key cryptosystem that uses lattice-based cryptography to encrypt and decrypt data. It consists of two algorithms: NTRUEncrypt, which is used for encryption, and NTRUSign, which is used for digital signatures. Unlike other popular public-key cryptosystems, it is resistant to attacks using Shor's algorithm ...