Search results
Results From The WOW.Com Content Network
The line segment ¯ has length and sum of the lengths of ¯ and ¯ equals the length of ¯, which is 1. Therefore, cos 2 θ + 2 sin 2 θ = 1 {\displaystyle \cos 2\theta +2\sin ^{2}\theta =1} .
Once this value (say x 0) is determined, extend the function to the right with a constant value of f(x 0) up to and including the point 1/8. Once this is done, a mirror image of the function can be created starting at the point 1/4 and extending downward towards 0. This function will be defined to be 0 outside of the interval [0, 1/4].
Another example of a curve with infinite length is the graph of the function defined by f(x) = x sin(1/x) for any open set with 0 as one of its delimiters and f(0) = 0. Sometimes the Hausdorff dimension and Hausdorff measure are used to quantify the size of such curves.
The y-axis ordinates of A, B and D are sin θ, tan θ and csc θ, respectively, while the x-axis abscissas of A, C and E are cos θ, cot θ and sec θ, respectively. Signs of trigonometric functions in each quadrant. Mnemonics like "all students take calculus" indicates when sine, cosine, and tangent are positive from quadrants I to IV. [8]
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...
While the trigonometric sine relates the arc length to the chord length in a unit-diameter circle + =, [3] the lemniscate sine relates the arc length to the chord length of a lemniscate (+) =. The lemniscate functions have periods related to a number ϖ = {\displaystyle \varpi =} 2.622057... called the lemniscate constant , the ratio of a ...
Let D, E, F be given on the lines BC, AC, AB so that the equation holds. Let AD, BE meet at O and let F' be the point where CO crosses AB. Then by the theorem, the equation also holds for D, E, F'. Comparing the two, ¯ ¯ = ′ ¯ ′ ¯
If y is rational, then f(y) = 1. To show the function is not continuous at y, we need to find an ε such that no matter how small we choose δ, there will be points z within δ of y such that f(z) is not within ε of f(y) = 1. In fact, 1 ⁄ 2 is such an ε.