Search results
Results From The WOW.Com Content Network
CUDA works with all Nvidia GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line. CUDA is compatible with most standard operating systems. CUDA 8.0 comes with the following libraries (for compilation & runtime, in alphabetical order): cuBLAS – CUDA Basic Linear Algebra Subroutines library; CUDART – CUDA Runtime library
Compatible with other formats Self-contained DNN Model Pre-processing and Post-processing Run-time configuration for tuning & calibration DNN model interconnect Common platform TensorFlow, Keras, Caffe, Torch: Algorithm training No No / Separate files in most formats No No No Yes ONNX: Algorithm training Yes No / Separate files in most formats ...
In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]
Nvidia NVDEC (formerly known as NVCUVID [1]) is a feature in its graphics cards that performs video decoding, offloading this compute-intensive task from the CPU. [2] NVDEC is a successor of PureVideo and is available in Kepler and later NVIDIA GPUs.
Supported API version TDP (Watts) Comments Core Shader Memory Pixel (GP/s) Texture (GT/s) Size Bandwidth Bus type Bus width Single precision Direct3D OpenGL OpenCL CUDA; GeForce 8100 mGPU [44] 2008 MCP78 TSMC 80 nm Unknown Unknown PCIe 2.0 x16 500 1200 400 (system memory) 8:8:4 2 4 Up to 512 from system memory 6.4 12.8
The GeForce 40 series is a family of consumer graphics processing units (GPUs) developed by Nvidia as part of its GeForce line of graphics cards, succeeding the GeForce 30 series.
Up until version 2.3, Keras supported multiple backends, including TensorFlow, Microsoft Cognitive Toolkit, Theano, and PlaidML. [7] [8] [9] As of version 2.4, only TensorFlow was supported. Starting with version 3.0 (as well as its preview version, Keras Core), however, Keras has become multi-backend again, supporting TensorFlow, JAX, and ...