Search results
Results From The WOW.Com Content Network
where is the pulse rate, also known as the symbol rate, in symbols/second or baud. Hartley then combined the above quantification with Nyquist's observation that the number of independent pulses that could be put through a channel of bandwidth B {\displaystyle B} hertz was 2 B {\displaystyle 2B} pulses per second, to arrive at his quantitative ...
Channel capacity, in electrical engineering, computer science, and information theory, is the theoretical maximum rate at which information can be reliably transmitted over a communication channel.
The maximum user signaling rate, synonymous to gross bit rate or data signaling rate, is the maximum rate, in bits per second, at which binary information can be transferred in a given direction between users over the communications system facilities dedicated to a particular information transfer transaction, under conditions of continuous transmission and no overhead information.
The purpose of the standard is to improve network throughput over the two previous standards—802.11a and 802.11g—with a significant increase in the maximum net data rate from 54 Mbit/s to 72 Mbit/s with a single spatial stream in a 20 MHz channel, and 600 Mbit/s (slightly higher gross bit rate including for example error-correction codes ...
The data rate is three bits per second. In the Navy, more than one flag pattern and arm can be used at once, so the combinations of these produce many symbols, each conveying several bits, a higher data rate. If N bits are conveyed per symbol, and the gross bit rate is R, inclusive of channel coding overhead, the symbol rate can be calculated as:
In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible (in theory) to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel.
In communication systems, in calculations of the Shannon–Hartley channel capacity, bandwidth refers to the 3 dB-bandwidth. In calculations of the maximum symbol rate, the Nyquist sampling rate, and maximum bit rate according to the Hartley's law, the bandwidth refers to the frequency range within which the gain is non-zero.
The figures below are simplex data rates, which may conflict with the duplex rates vendors sometimes use in promotional materials. Where two values are listed, the first value is the downstream rate and the second value is the upstream rate. The use of decimal prefixes is standard in data communications.