Search results
Results From The WOW.Com Content Network
The K-nearest neighbor classification performance can often be significantly improved through metric learning. Popular algorithms are neighbourhood components analysis and large margin nearest neighbor. Supervised metric learning algorithms use the label information to learn a new metric or pseudo-metric.
This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables. General tests [ edit ]
A kernel smoother is a statistical technique to estimate a real valued function: as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter.
Neighbourhood components analysis is a supervised learning method for classifying multivariate data into distinct classes according to a given distance metric over the data. Functionally, it serves the same purposes as the K-nearest neighbors algorithm and makes direct use of a related concept termed stochastic nearest neighbours .
In probability and statistics, a nearest neighbor function, nearest neighbor distance distribution, [1] nearest-neighbor distribution function [2] or nearest neighbor distribution [3] is a mathematical function that is defined in relation to mathematical objects known as point processes, which are often used as mathematical models of physical phenomena representable as randomly positioned ...
In statistical analysis, the nearest-neighbor chain algorithm based on following paths in this graph can be used to find hierarchical clusterings quickly. Nearest neighbor graphs are also a subject of computational geometry. The method can be used to induce a graph on nodes with unknown connectivity.
Topic modeling to extract the main themes using NNMF and Factor Analysis. Correspondence analysis in order to identify words or concepts (or content categories) associated with any categorical meta-data associated with documents. Pre-and post-processing with R and python script; Analyze more than 70 languages including Chinese, Japanese, Korean ...
k-nearest neighbor search identifies the top k nearest neighbors to the query. This technique is commonly used in predictive analytics to estimate or classify a point based on the consensus of its neighbors. k-nearest neighbor graphs are graphs in which every point is connected to its k nearest neighbors.