Search results
Results From The WOW.Com Content Network
These tables list values of molar ionization energies, measured in kJ⋅mol −1. This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions. The first molar ionization energy applies to the neutral atoms.
Because of the typical order of magnitude for energy changes in chemical processes, kJ·mol −1 is normally used instead of J·mol −1. For example, heats of fusion and vaporization are usually of the order of 10 kJ·mol −1, bond energies are of the order of 100 kJ·mol −1, and ionization energies of the order of 1000 kJ·mol −1.
1 M = 1 mol/L = 10 −3 mol/m 3. All orders. List of orders of magnitude for molar concentration; ... nM nanomolar 10 9 M GM gigamolar 10 −12 M pM picomolar 10 12 M TM
10 3: kilo-(kJ) 1.1×10 3 J: ≈ 1 British thermal unit (BTU), depending on the temperature [59] 1.4×10 3 J: Total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant) [93] 2.3×10 3 J: Energy to vaporize 1 g of water into steam [94] 3×10 3 J: Lorentz force can crusher pinch [95 ...
R ∗ = 8.314 32 × 10 3 N⋅m⋅kmol −1 ⋅K −1 = 8.314 32 J⋅K −1 ⋅mol −1. Note the use of the kilomole, with the resulting factor of 1000 in the constant. The USSA1976 acknowledges that this value is not consistent with the cited values for the Avogadro constant and the Boltzmann constant. [ 13 ]
[1] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100. To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to m 6 P a / m o l 2 {\displaystyle \mathrm {m^{6}Pa/mol^{2}} } , divide by 10.
For each atom, the column marked 1 is the first ionization energy to ionize the neutral atom, the column marked 2 is the second ionization energy to remove a second electron from the +1 ion, the column marked 3 is the third ionization energy to remove a third electron from the +2 ion, and so on.
132.7 K (−140.3 °C), 3498 kPa, 11.1 mol/L (3.1×10 2 kg/m 3) Std enthalpy change of fusion, Δ fus H o? kJ/mol Std entropy change of fusion, Δ fus S o? J/(mol K) Std enthalpy change of vaporization, Δ vap H o? kJ/mol Std entropy change of vaporization, Δ vap S o? J/(mol K) Std enthalpy change of sublimation, Δ sub H o: 8 kJ/mol (at 51 ...