When.com Web Search

  1. Ads

    related to: substitution method math examples worksheets free

Search results

  1. Results From The WOW.Com Content Network
  2. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  3. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:

  4. List of mathematics-based methods - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematics-based...

    Information bottleneck method; Inverse chain rule method ; Inverse transform sampling method (probability) Iterative method (numerical analysis) Jacobi method (linear algebra) Largest remainder method (voting systems) Level-set method; Linear combination of atomic orbitals molecular orbital method (molecular orbitals) Method of characteristics

  5. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/.../Tangent_half-angle_substitution

    The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution , [ 6 ] and also known by variant names such as half-tangent substitution or half-angle substitution .

  6. Elementary algebra - Wikipedia

    en.wikipedia.org/wiki/Elementary_algebra

    And, substitution allows one to derive restrictions on the possible values, or show what conditions the statement holds under. For example, taking the statement x + 1 = 0, if x is substituted with 1, this implies 1 + 1 = 2 = 0, which is false, which implies that if x + 1 = 0 then x cannot be 1.

  7. Explicit substitution - Wikipedia

    en.wikipedia.org/wiki/Explicit_substitution

    One most important example is the "substitution lemma", which with the notation of λx becomes (M x:=N ) y:=P = (M y:=P ) x:=(N y:=P ) (where x≠y and x not free in P) A surprising counterexample, due to Melliès, [ 5 ] shows that the way this rule is encoded in the original calculus of explicit substitutions is not strongly normalizing .