Search results
Results From The WOW.Com Content Network
One possible solution to this anchor point placement problem is to remove the histogram binning grid completely. In the left figure below, a kernel (represented by the grey lines) is centred at each of the 50 data points above. The result of summing these kernels is given on the right figure, which is a kernel density estimate.
An example is the compareTo method: a. compareTo (b) checks whether a comes before or after b in some ordering, but the way to compare, say, two rational numbers will be different from the way to compare two strings. Other common examples of binary methods include equality tests, arithmetic operations, and set operations like subset and union.
The effect of these sources of randomness on the distribution of the inputs to internal layers during training is described as internal covariate shift. Although a clear-cut precise definition seems to be missing, the phenomenon observed in experiments is the change on means and variances of the inputs to internal layers during training.
The origins of SSA and, more generally, of subspace-based methods for signal processing, go back to the eighteenth century (Prony's method).A key development was the formulation of the spectral decomposition of the covariance operator of stochastic processes by Kari Karhunen and Michel Loève in the late 1940s (Loève, 1945; Karhunen, 1947).
An example is provided by the analysis of trend in sea-level by Woodworth (1987). [9] Here the dependent variable (and variable of most interest) was the annual mean sea level at a given location for which a series of yearly values were available. The primary independent variable was "time".
Covariant return types have been (partially) allowed in the Java language since the release of JDK5.0, [2] so the following example wouldn't compile on a previous release: // Classes used as return types: class A { } class B extends A { } // "Class B is narrower than class A" // Classes demonstrating method overriding: class C { A getFoo ...
Analysis of covariance (ANCOVA) is a general linear model that blends ANOVA and regression. ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of one or more categorical independent variables (IV) and across one or more continuous variables.
The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]