Search results
Results From The WOW.Com Content Network
Covariant return types have been (partially) allowed in the Java language since the release of JDK5.0, [2] so the following example wouldn't compile on a previous release: // Classes used as return types: class A { } class B extends A { } // "Class B is narrower than class A" // Classes demonstrating method overriding: class C { A getFoo ...
An example is the compareTo method: a. compareTo (b) checks whether a comes before or after b in some ordering, but the way to compare, say, two rational numbers will be different from the way to compare two strings. Other common examples of binary methods include equality tests, arithmetic operations, and set operations like subset and union.
In probability theory and statistics, the covariance function describes how much two random variables change together (their covariance) with varying spatial or temporal separation. For a random field or stochastic process Z ( x ) on a domain D , a covariance function C ( x , y ) gives the covariance of the values of the random field at the two ...
An example is provided by the analysis of trend in sea-level by Woodworth (1987). [9] Here the dependent variable (and variable of most interest) was the annual mean sea level at a given location for which a series of yearly values were available. The primary independent variable was "time".
One possible solution to this anchor point placement problem is to remove the histogram binning grid completely. In the left figure below, a kernel (represented by the grey lines) is centred at each of the 50 data points above. The result of summing these kernels is given on the right figure, which is a kernel density estimate.
Analysis of covariance (ANCOVA) is a general linear model that blends ANOVA and regression. ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of one or more categorical independent variables (IV) and across one or more continuous variables.
The effect of these sources of randomness on the distribution of the inputs to internal layers during training is described as internal covariate shift. Although a clear-cut precise definition seems to be missing, the phenomenon observed in experiments is the change on means and variances of the inputs to internal layers during training.
Suppose there are m regression equations = +, =, …,. Here i represents the equation number, r = 1, …, R is the individual observation, and we are taking the transpose of the column vector.