Search results
Results From The WOW.Com Content Network
The reciprocal transformation, some power transformations such as the Yeo–Johnson transformation, and certain other transformations such as applying the inverse hyperbolic sine, can be meaningfully applied to data that include both positive and negative values [10] (the power transformation is invertible over all real numbers if λ is an odd ...
The most efficient way to obtain interval estimates when analyzing log-normally distributed data consists of applying the well-known methods based on the normal distribution to logarithmically transformed data and then to back-transform results if appropriate.
Another generalized log-logistic distribution is the log-transform of the metalog distribution, in which power series expansions in terms of are substituted for logistic distribution parameters and . The resulting log-metalog distribution is highly shape flexible, has simple closed form PDF and quantile function , can be fit to data with linear ...
Type I has also been called the skew-logistic distribution. Type IV subsumes the other types and is obtained when applying the logit transform to beta random variates. Following the same convention as for the log-normal distribution , type IV may be referred to as the logistic-beta distribution , with reference to the standard logistic function ...
It is customary to transform data logarithmically to fit symmetrical distributions (like the normal and logistic) to data obeying a distribution that is positively skewed (i.e. skew to the right, with mean > mode, and with a right hand tail that is longer than the left hand tail), see lognormal distribution and the loglogistic distribution. A ...
When the parameters are estimated using the log-likelihood for the maximum likelihood estimation, each data point is used by being added to the total log-likelihood. As the data can be viewed as an evidence that support the estimated parameters, this process can be interpreted as "support from independent evidence adds", and the log-likelihood ...
The shifted log-logistic distribution is a probability distribution also known as the generalized log-logistic or the three-parameter log-logistic distribution. [ 1 ] [ 2 ] It has also been called the generalized logistic distribution, [ 3 ] but this conflicts with other uses of the term: see generalized logistic distribution .
The distribution is said to be left-skewed, left-tailed, or skewed to the left, despite the fact that the curve itself appears to be skewed or leaning to the right; left instead refers to the left tail being drawn out and, often, the mean being skewed to the left of a typical center of the data. A left-skewed distribution usually appears as a ...