Ad
related to: optimal output graph calculator math problems
Search results
Results From The WOW.Com Content Network
The satisfiability problem, also called the feasibility problem, is just the problem of finding any feasible solution at all without regard to objective value. This can be regarded as the special case of mathematical optimization where the objective value is the same for every solution, and thus any solution is optimal.
The optimal output, shown in the graph as , is the level of output at which marginal cost equals marginal revenue. The price that induces that quantity of output is the height of the demand curve at that quantity (denoted P m {\displaystyle P_{m}} ).
An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set. A problem with continuous variables is known as a continuous optimization, in which an optimal value from a continuous function must be found.
The algorithm addresses the problem that T is not a tour by identifying all the odd degree vertices in T; since the sum of degrees in any graph is even (by the Handshaking lemma), there is an even number of such vertices. The algorithm finds a minimum-weight perfect matching M among the odd-degree ones.
Another related problem is the bottleneck travelling salesman problem: Find a Hamiltonian cycle in a weighted graph with the minimal weight of the weightiest edge. A real-world example is avoiding narrow streets with big buses. [15] The problem is of considerable practical importance, apart from evident transportation and logistics areas.
The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: The problem instance has a number of agents and a number of tasks. Any agent can be assigned to perform any task, incurring some cost that may vary depending on the agent-task assignment.
Optimal job scheduling is a class of optimization problems related to scheduling. The inputs to such problems are a list of jobs (also called processes or tasks) and a list of machines (also called processors or workers). The required output is a schedule – an assignment of jobs to machines.
Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, [1] whereas mathematical optimization is in general NP-hard. [2 ...