Ad
related to: conjecture math example
Search results
Results From The WOW.Com Content Network
Conjecture Field Comments Eponym(s) Cites 1/3–2/3 conjecture: order theory: n/a: 70 abc conjecture: number theory: ⇔Granville–Langevin conjecture, Vojta's conjecture in dimension 1 ⇒ErdÅ‘s–Woods conjecture, Fermat–Catalan conjecture Formulated by David Masser and Joseph Oesterlé. [1] Proof claimed in 2012 by Shinichi Mochizuki: n/a ...
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [ 1 ] [ 2 ] [ 3 ] Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem , proven in 1995 by Andrew Wiles ), have shaped much of mathematical history as new areas of mathematics are developed in ...
The Collatz conjecture states that all paths eventually lead to 1. The Collatz conjecture [a] is one of the most famous unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1.
This conjecture is known as Lemoine's conjecture and is also called Levy's conjecture. The Goldbach conjecture for practical numbers, a prime-like sequence of integers, was stated by Margenstern in 1984, [33] and proved by Melfi in 1996: [34] every even number is a sum of two practical numbers.
The abc conjecture (also known as the Oesterlé–Masser conjecture) is a conjecture in number theory that arose out of a discussion of Joseph Oesterlé and David Masser in 1985. [ 1 ] [ 2 ] It is stated in terms of three positive integers a , b {\displaystyle a,b} and c {\displaystyle c} (hence the name) that are relatively prime and satisfy a ...
The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the ...
The conjecture was formulated in 1993 by Andrew Beal, a banker and amateur mathematician, while investigating generalizations of Fermat's Last Theorem. [1] [2] Since 1997, Beal has offered a monetary prize for a peer-reviewed proof of this conjecture or a counterexample. [3] The value of the prize has increased several times and is currently $1 ...
The Poincaré conjecture was a mathematical problem in the field of geometric topology. In terms of the vocabulary of that field, it says the following: Poincaré conjecture. Every three-dimensional topological manifold which is closed, connected, and has trivial fundamental group is homeomorphic to the three-dimensional sphere.