When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process.

  3. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    A matrix with one column, sometimes used to represent a vector ... Interchanging two rows or two columns affects the determinant by multiplying it by −1. [36]

  4. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    There are three types of elementary row operations which may be performed on the rows of a matrix: Interchanging two rows. Multiplying a row by a non-zero scalar. Adding a scalar multiple of one row to another. If the matrix is associated to a system of linear equations, then these operations do not change the solution set.

  5. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    In this case, the determinant of the resulting row echelon form equals the determinant of the initial matrix. As a row echelon form is a triangular matrix, its determinant is the product of the entries of its diagonal. So, the determinant can be computed for almost free from the result of a Gaussian elimination.

  6. Permutation matrix - Wikipedia

    en.wikipedia.org/wiki/Permutation_matrix

    Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π −1.The details are a bit tricky. To begin with, when we permute the entries of a vector (, …,) by some permutation π, we move the entry of the input vector into the () slot of the output vector.

  7. Square matrix - Wikipedia

    en.wikipedia.org/wiki/Square_matrix

    Interchanging two rows or two columns affects the determinant by multiplying it by −1. [10] Using these operations, any matrix can be transformed to a lower (or upper) triangular matrix, and for such matrices the determinant equals the product of the entries on the main diagonal; this provides a method to calculate the determinant of any matrix.

  8. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    The rows of the inverse matrix V of a matrix U are orthonormal to the columns of U (and vice versa interchanging rows for columns). To see this, suppose that UV = VU = I where the rows of V are denoted as v i T {\displaystyle v_{i}^{\mathrm {T} }} and the columns of U as u j {\displaystyle u_{j}} for 1 ≤ i , j ≤ n . {\displaystyle 1\leq i,j ...

  9. Hadamard matrix - Wikipedia

    en.wikipedia.org/wiki/Hadamard_matrix

    Two Hadamard matrices are considered equivalent if one can be obtained from the other by negating rows or columns, or by interchanging rows or columns. Up to equivalence, there is a unique Hadamard matrix of orders 1, 2, 4, 8, and 12.