When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.

  3. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function ⁠ 1 / Γ(z) ⁠ is an entire function.

  4. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The following functions and variables are used in the table below: δ represents the Dirac delta function. u(t) represents the Heaviside step function. Literature may refer to this by other notation, including () or (). Γ(z) represents the Gamma function. γ is the Euler–Mascheroni constant. t is a real number.

  5. Lanczos approximation - Wikipedia

    en.wikipedia.org/wiki/Lanczos_approximation

    Thus computing the gamma function becomes a matter of evaluating only a small number of elementary functions and multiplying by stored constants. The Lanczos approximation was popularized by Numerical Recipes , according to which computing the gamma function becomes "not much more difficult than other built-in functions that we take for granted ...

  6. Ramanujan's master theorem - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_master_theorem

    where () is the gamma function. It was widely used by Ramanujan to calculate definite integrals and infinite series. Higher-dimensional versions of this theorem also appear in quantum physics through Feynman diagrams. [2] A similar result was also obtained by Glaisher. [3]

  7. Bohr–Mollerup theorem - Wikipedia

    en.wikipedia.org/wiki/Bohr–Mollerup_theorem

    as the only positive function f , with domain on the interval x > 0, that simultaneously has the following three properties: f (1) = 1, and f (x + 1) = x f (x) for x > 0 and f is logarithmically convex. A treatment of this theorem is in Artin's book The Gamma Function, [4] which has been reprinted by the AMS in a collection of Artin's writings.

  8. q-gamma function - Wikipedia

    en.wikipedia.org/wiki/Q-gamma_function

    Thus the -gamma function can be considered as an extension of the -factorial function to the real numbers. The relation to the ordinary gamma function is made explicit in the limit = (). There is a simple proof of this limit by Gosper.

  9. Incomplete gamma function - Wikipedia

    en.wikipedia.org/wiki/Incomplete_gamma_function

    Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] (,) = = (+) (+) = = (+ +). Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all ...