Ad
related to: industrial uses of oxygen gas and chlorine solution to create
Search results
Results From The WOW.Com Content Network
The chlorine gas is compressed at this stage and may be further cooled by inter- and after-coolers. After compression it flows to the liquefiers, where it is cooled enough to liquefy. Non condensible gases and remaining chlorine gas are vented off as part of the pressure control of the liquefaction systems.
In chemistry, oxychlorination is a process for generating the equivalent of chlorine gas (Cl 2) from hydrogen chloride and oxygen. [1] This process is attractive industrially because hydrogen chloride is less expensive than chlorine. [2]
The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide (caustic soda), [1] which are commodity chemicals required by industry.
A gas regulator attached to a nitrogen cylinder. Industrial gases are the gaseous materials that are manufactured for use in industry.The principal gases provided are nitrogen, oxygen, carbon dioxide, argon, hydrogen, helium and acetylene, although many other gases and mixtures are also available in gas cylinders.
A chlorate candle, or an oxygen candle, is a cylindrical chemical oxygen generator that contains a mix of sodium chlorate and iron powder, which when ignited smolders at about 600 °C (1,100 °F), producing sodium chloride, iron oxide, and oxygen at a fixed rate of about 6.5 man-hours per kilogram of the mixture. The mixture has an indefinite ...
A mixed oxidant solution (MOS) is a type of disinfectant that has many uses including disinfecting, sterilizing, and eliminating pathogenic microorganisms in water. [1] An MOS may have advantages such as a higher disinfecting power, stable residual chlorine in water, elimination of biofilm, and safety. [2]
The first type, shown on the right and left of the diagram, uses an electrolyte of sodium chloride solution, a graphite anode (A), and a mercury cathode (M). The other type of cell, shown in the center of the diagram, uses an electrolyte of sodium hydroxide solution, a mercury anode (M), and an iron cathode (D). The mercury electrode is common ...
In the membrane oxygen plant, gas separation is achieved in the gas separation module composed of hollow-fiber membranes and representing the plant critical and high-technology unit. Apart from the gas separation unit, other important technical components are the booster compressor or vacuum pump, pre-purifier unit, and the plant control system.