Search results
Results From The WOW.Com Content Network
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. [1] For example, x 5 + 2 x 3 y 2 + 9 x y 4 {\displaystyle x^{5}+2x^{3}y^{2}+9xy^{4}} is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5.
For example, + + is a homogeneous polynomial of degree 5. Homogeneous polynomials also define homogeneous functions. Given a homogeneous polynomial of degree with real coefficients that takes only positive values, one gets a positively homogeneous function of degree / by raising it to the power /.
The complete homogeneous symmetric polynomials are characterized by the following identity of formal power series in t: = (, …,) = = = = = (this is called the generating function, or generating series, for the complete homogeneous symmetric polynomials).
More concretely, an n-ary quadratic form over a field K is a homogeneous polynomial of degree 2 in n variables with coefficients in K: (, …,) = = =,. This formula may be rewritten using matrices: let x be the column vector with components x 1 , ..., x n and A = ( a ij ) be the n × n matrix over K whose entries are the coefficients of q .
Pages in category "Homogeneous polynomials" The following 18 pages are in this category, out of 18 total. This list may not reflect recent changes. ...
In the case of polynomials in more than one indeterminate, a polynomial is called homogeneous of degree n if all of its non-zero terms have degree n. The zero polynomial is homogeneous, and, as a homogeneous polynomial, its degree is undefined. [c] For example, x 3 y 2 + 7x 2 y 3 − 3x 5 is homogeneous of degree 5. For more details, see ...
In mathematics, in particular in algebra, polarization is a technique for expressing a homogeneous polynomial in a simpler fashion by adjoining more variables. Specifically, given a homogeneous polynomial, polarization produces a unique symmetric multilinear form from which the original polynomial can be recovered by evaluating along a certain diagonal.
In mathematics, a binary quadratic form is a quadratic homogeneous polynomial in two variables (,) = + +,where a, b, c are the coefficients.When the coefficients can be arbitrary complex numbers, most results are not specific to the case of two variables, so they are described in quadratic form.