Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
If X has a standard uniform distribution, then Y = X n has a beta distribution with parameters (1/n,1). As such, The Irwin–Hall distribution is the sum of n i.i.d. U(0,1) distributions. The Bates distribution is the average of n i.i.d. U(0,1) distributions. The standard uniform distribution is a special case of the beta distribution, with ...
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
The shape of a distribution will fall somewhere in a continuum where a flat distribution might be considered central and where types of departure from this include: mounded (or unimodal), U-shaped, J-shaped, reverse-J shaped and multi-modal. [1] A bimodal distribution would have two high points rather than one. The shape of a distribution is ...
From this graph, we might deduce that B, C, and D are all conditionally independent given A. This means that if the value of A is known, then the values of B, C, and D provide no further information about each other. Equivalently (in this case), the joint probability distribution can be factorized as:
Continuous uniform distribution. One of the simplest examples of a discrete univariate distribution is the discrete uniform distribution, where all elements of a finite set are equally likely. It is the probability model for the outcomes of tossing a fair coin, rolling a fair die, etc.
In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function , then the characteristic function is the Fourier transform (with sign reversal) of the probability density function.
The graph tends towards the dashed asymptote passing through (1, log 10 e) with slope −1 in log–log scale. The example in yellow shows that the probability of a number starts with 314 is around 0.00138. The dotted lines show the probabilities for a uniform distribution for comparison. (In the SVG image, hover over a point to show its values.)