Ad
related to: inorganic chemistry mean radial arm model for chemical
Search results
Results From The WOW.Com Content Network
The Dewar–Chatt–Duncanson model is a model in organometallic chemistry that explains the chemical bonding in transition metal alkene complexes. The model is named after Michael J. S. Dewar , [ 1 ] Joseph Chatt and L. A. Duncanson .
The position of each atom is determined by the nature of the chemical bonds by which it is connected to its neighboring atoms. The molecular geometry can be described by the positions of these atoms in space, evoking bond lengths of two joined atoms, bond angles of three connected atoms, and torsion angles ( dihedral angles ) of three ...
In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron.The bond angles are arccos(− 1 / 3 ) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH 4) [1] [2] as well as its heavier analogues.
Ligand field theory resulted from combining the principles laid out in molecular orbital theory and crystal field theory, which describe the loss of degeneracy of metal d orbitals in transition metal complexes.
Space-filling model of ferrocene, the archetypal sandwich compound. In organometallic chemistry, a sandwich compound is a chemical compound featuring a metal bound by haptic, covalent bonds to two arene (ring) ligands. The arenes have the formula C n H n, substituted derivatives (for example C n (CH 3) n) and heterocyclic derivatives (for ...
Non-stoichiometric compounds are chemical compounds, almost always solid inorganic compounds, having elemental composition whose proportions cannot be represented by a ratio of small natural numbers (i.e. an empirical formula); most often, in such materials, some small percentage of atoms are missing or too many atoms are packed into an ...
Inorganic compounds exhibit a range of bonding properties. Some are ionic compounds, consisting of very simple cations and anions joined by ionic bonding.Examples of salts (which are ionic compounds) are magnesium chloride MgCl 2, which consists of magnesium cations Mg 2+ and chloride anions Cl −; or sodium hydroxide NaOH, which consists of sodium cations Na + and hydroxide anions OH −.
In chemistry, ligand close packing theory (LCP theory), sometimes called the ligand close packing model describes how ligand – ligand repulsions affect the geometry around a central atom. [1] It has been developed by R. J. Gillespie and others from 1997 onwards [ 2 ] and is said to sit alongside VSEPR [ 1 ] which was originally developed by R ...