Ad
related to: calculus of variations and pde
Search results
Results From The WOW.Com Content Network
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.
Such equations arise in the construction of characteristic surfaces for hyperbolic partial differential equations, in the calculus of variations, in some geometrical problems, and in simple models for gas dynamics whose solution involves the method of characteristics, e.g., the advection equation. If a family of solutions of a single first ...
In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. . Accordingly, the necessary condition of extremum (functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function
In the calculus of variations and classical mechanics, the Euler–Lagrange equations [1] are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.
Calculus of Variations and Non-Linear Partial Differential Equations (with Michael Grain Crandall, Nicola Fusco, Luis Caffarelli, Lawrence C. Evans), Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 27-July 2, 2005, LNM Series No. 1917, Bernard Dacorogna and Paolo Marcellini Editors, Springer-Verlag, Berlin & Heidelberg ...
Malliavin calculus is named after Paul Malliavin whose ideas led to a proof that Hörmander's condition implies the existence and smoothness of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. The calculus has been applied to stochastic ...
In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, [1] introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of ...