When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  3. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    Solar radiation pressure on objects near the Earth may be calculated using the Sun's irradiance at 1 AU, known as the solar constant, or G SC, whose value is set at 1361 W/m 2 as of 2011. [17] All stars have a spectral energy distribution that depends on their surface temperature. The distribution is approximately that of black-body radiation.

  4. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    Taking the pressure as zero at the surface, where z is zero, the constant will be zero, so the pressure inside the fluid, when it is subject to gravity, is =. So pressure increases with depth below the surface of a liquid, as z denotes the distance from the surface of the liquid into it. Any object with a non-zero vertical depth will have ...

  5. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    Here the pressure P D is referred to as dynamic pressure due to the kinetic energy of the fluid experiencing relative flow velocity u. This is defined in similar form as the kinetic energy equation: P D = 1 2 ρ u 2 {\displaystyle P_{\rm {D}}={\frac {1}{2}}\rho u^{2}}

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  7. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.

  8. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A series of steel ball bearings of different diameters are normally used in the classic experiment to improve the accuracy of the calculation.

  9. Ground pressure - Wikipedia

    en.wikipedia.org/wiki/Ground_pressure

    Pressure is measured in the SI unit of pascals (Pa). Average ground pressure can be calculated using the standard formula for average pressure: P = F/A. [2] In an idealised case, i.e. a static, uniform net force normal to level ground, this is simply the object's weight divided by contact area.