When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition , and won the ImageNet Large Scale Visual Recognition Challenge ( ILSVRC ) of that year.

  3. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    The codebase for AlexNet was released under a BSD license, and had been commonly used in neural network research for several subsequent years. [ 20 ] [ 17 ] In one direction, subsequent works aimed to train increasingly deep CNNs that achieve increasingly higher performance on ImageNet.

  4. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    Residual connections, or skip connections, refers to the architectural motif of +, where is an arbitrary neural network module. This gives the gradient of ∇ f + I {\displaystyle \nabla f+I} , where the identity matrix do not suffer from the vanishing or exploding gradient.

  5. Weight initialization - Wikipedia

    en.wikipedia.org/wiki/Weight_initialization

    Residual connections gave rise to their own weight initialization problems and strategies. Fixup initialization is designed specifically for networks with residual connections and without batch normalization, as follows: [18] Initialize the classification layer and the last layer of each residual branch to 0.

  6. Residual network - Wikipedia

    en.wikipedia.org/?title=Residual_network&redirect=no

    This page was last edited on 20 November 2017, at 05:18 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  7. Neural architecture search - Wikipedia

    en.wikipedia.org/wiki/Neural_architecture_search

    Neural architecture search (NAS) [1] [2] is a technique for automating the design of artificial neural networks (ANN), a widely used model in the field of machine learning.NAS has been used to design networks that are on par with or outperform hand-designed architectures.

  8. ResNet (disambiguation) - Wikipedia

    en.wikipedia.org/wiki/ResNet_(disambiguation)

    Residential network, a computer network provided by a university to serve residence halls; Residual flow network, in graph theory; Residual neural network, a type of artificial neural network; Residential Energy Services Network (RESNET), an organization responsible for home energy ratings

  9. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.