When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The tables contain the prime factorization of the natural numbers from 1 to 1000. When n is a prime number, the prime factorization is just n itself, written in bold below. The number 1 is called a unit. It has no prime factors and is neither prime nor composite.

  3. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    A cluster prime is a prime p such that every even natural number k ≤ p − 3 is the difference of two primes not exceeding p. 3, 5, 7, 11, 13, 17, 19, 23, ... (OEIS: A038134) All odd primes between 3 and 89, inclusive, are cluster primes. The first 10 primes that are not cluster primes are: 2, 97, 127, 149, 191, 211, 223, 227, 229, 251.

  4. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  5. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    Now the product of the factors a − mb mod n can be obtained as a square in two ways—one for each homomorphism. Thus, one can find two numbers x and y , with x 2 − y 2 divisible by n and again with probability at least one half we get a factor of n by finding the greatest common divisor of n and x − y .

  6. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,

  7. Ulam spiral - Wikipedia

    en.wikipedia.org/wiki/Ulam_spiral

    The Ulam spiral or prime spiral is a graphical depiction of the set of prime numbers, devised by mathematician Stanisław Ulam in 1963 and popularized in Martin Gardner's Mathematical Games column in Scientific American a short time later. [1] It is constructed by writing the positive integers in a square spiral and specially marking the prime ...

  8. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    Because the prime factorization of a highly composite number uses all of the first k primes, every highly composite number must be a practical number. [8] Due to their ease of use in calculations involving fractions , many of these numbers are used in traditional systems of measurement and engineering designs.

  9. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite. The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime.