When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body. There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles. These 12 ...

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Connecting the Lie algebra to the Lie group is the exponential map, which is defined using the standard matrix exponential series for e A [13] For any skew-symmetric matrix A, exp(A) is always a rotation matrix. [nb 3] An important practical example is the 3 × 3 case.

  5. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I]

  6. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    For example, in the MATLAB or GNU Octave function pinv, the tolerance is taken to be t = ε⋅max(m, n)⋅max(Σ), where ε is the machine epsilon. The computational cost of this method is dominated by the cost of computing the SVD, which is several times higher than matrixmatrix multiplication, even if a state-of-the art implementation ...

  7. Tridiagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix

    In general, the inverse of a tridiagonal matrix is a semiseparable matrix and vice versa. [11] The inverse of a symmetric tridiagonal matrix can be written as a single-pair matrix (a.k.a. generator-representable semiseparable matrix) of the form [12] [13]

  8. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...

  9. Givens rotation - Wikipedia

    en.wikipedia.org/wiki/Givens_rotation

    This new matrix A 3 is the upper triangular matrix needed to perform an iteration of the QR decomposition. Q is now formed using the transpose of the rotation matrices in the following manner: Q = G 1 T G 2 T . {\displaystyle Q=G_{1}^{T}\,G_{2}^{T}.}