When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    k = −1 corresponds to a point reflection at point S Homothety of a pyramid In mathematics , a homothety (or homothecy , or homogeneous dilation ) is a transformation of an affine space determined by a point S called its center and a nonzero number k called its ratio , which sends point X to a point X ′ by the rule, [ 1 ]

  3. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    This is a glide reflection, except in the special case that the translation is perpendicular to the line of reflection, in which case the combination is itself just a reflection in a parallel line. The identity isometry, defined by I ( p ) = p for all points p is a special case of a translation, and also a special case of a rotation.

  4. Template:Frieze group notations - Wikipedia

    en.wikipedia.org/wiki/Template:Frieze_group...

    The translations here arise from the glide reflections, so this group is generated by a glide reflection and either a rotation or a vertical reflection. p11m [∞ +,2] C ∞h Z ∞ ×Dih 1 ∞* jump (THG) Translations, Horizontal reflections, Glide reflections: This group is generated by a translation and the reflection in the horizontal axis.

  5. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    (A reflection would not preserve handedness; for instance, it would transform a left hand into a right hand.) To avoid ambiguity, a transformation that preserves handedness is known as a rigid motion, a Euclidean motion, or a proper rigid transformation. In dimension two, a rigid motion is either a translation or a rotation.

  6. Symmetry operation - Wikipedia

    en.wikipedia.org/wiki/Symmetry_operation

    In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.

  7. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    Combining two equal glide plane operations gives a pure translation with a translation vector that is twice that of the glide reflection, so the even powers of the glide reflection form a translation group. In the case of glide-reflection symmetry, the symmetry group of an object contains a glide reflection and the group generated by it. For ...

  8. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    Any combination of reflections, translations, and rotations is called an isometry. Any combination of reflections, dilations, translations, and rotations is a similarity. All of these are conformal maps, and in fact, where the space has three or more dimensions, the mappings generated by inversion are the only conformal mappings.

  9. Translation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Translation_(geometry)

    In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is ...