Search results
Results From The WOW.Com Content Network
Spherical coordinates (r, θ, φ) as commonly used: (ISO 80000-2:2019): radial distance r (slant distance to origin), polar angle θ (angle with respect to positive polar axis), and azimuthal angle φ (angle of rotation from the initial meridian plane). This is the convention followed in this article.
Every rotation in three dimensions is defined by its axis (a vector along this axis is unchanged by the rotation), and its angle — the amount of rotation about that axis (Euler rotation theorem). There are several methods to compute the axis and angle from a rotation matrix (see also axis–angle representation ).
Vectors are defined in spherical coordinates by (r, θ, φ), where r is the length of the vector, θ is the angle between the positive Z-axis and the vector in question (0 ≤ θ ≤ π), and; φ is the angle between the projection of the vector onto the xy-plane and the positive X-axis (0 ≤ φ < 2π).
A point is chosen as the pole and a ray from this point is taken as the polar axis. For a given angle θ, there is a single line through the pole whose angle with the polar axis is θ (measured counterclockwise from the axis to the line). Then there is a unique point on this line whose signed distance from the origin is r for given number r.
The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...
If r(φ − α) = r(φ) it will be rotationally symmetric by α clockwise and counterclockwise about the pole. Because of the circular nature of the polar coordinate system, many curves can be described by a rather simple polar equation, whereas their Cartesian form is much more intricate.
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
A simple rotation R about a rotation centre O leaves an entire plane A through O (axis-plane) fixed. Every plane B that is completely orthogonal to A intersects A in a certain point P. For each such point P is the centre of the 2D rotation induced by R in B. All these 2D rotations have the same rotation angle α.