When.com Web Search

  1. Ad

    related to: add radical expression calculator roots of polynomial

Search results

  1. Results From The WOW.Com Content Network
  2. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula

  3. Radical polynomial - Wikipedia

    en.wikipedia.org/wiki/Radical_polynomial

    The standard separation of variables theorem asserts that every polynomial can be expressed as a finite sum of terms, each term being a product of a radical polynomial and a harmonic polynomial. This is equivalent to the statement that the ring of all polynomials is a free module over the ring of radical polynomials.

  4. Radical extension - Wikipedia

    en.wikipedia.org/wiki/Radical_extension

    Radical extensions occur naturally when solving polynomial equations in radicals.In fact a solution in radicals is the expression of the solution as an element of a radical series: a polynomial f over a field K is said to be solvable by radicals if there is a splitting field of f over K contained in a radical extension of K.

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    An unresolved root, especially one using the radical symbol, is sometimes referred to as a surd [2] or a radical. [3] Any expression containing a radical, whether it is a square root, a cube root, or a higher root, is called a radical expression , and if it contains no transcendental functions or transcendental numbers it is called an algebraic ...

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The number of roots of a nonzero polynomial P, counted with their respective multiplicities, cannot exceed the degree of P, [25] and equals this degree if all complex roots are considered (this is a consequence of the fundamental theorem of algebra). The coefficients of a polynomial and its roots are related by Vieta's formulas.

  7. Algebraic operation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_operation

    The plus–minus sign, ±, is used as a shorthand notation for two expressions written as one, representing one expression with a plus sign, the other with a minus sign. For example, y = x ± 1 represents the two equations y = x + 1 and y = x − 1. Sometimes, it is used for denoting a positive-or-negative term such as ±x.

  8. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    It follows that the roots of a polynomial with real coefficients are mirror-symmetric with respect to the real axis. This can be extended to algebraic conjugation: the roots of a polynomial with rational coefficients are conjugate (that is, invariant) under the action of the Galois group of the polynomial. However, this symmetry can rarely be ...

  9. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.