When.com Web Search

  1. Ads

    related to: maxwell equations for dummies 5th ed

Search results

  1. Results From The WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The above equations are the microscopic version of Maxwell's equations, expressing the electric and the magnetic fields in terms of the (possibly atomic-level) charges and currents present. This is sometimes called the "general" form, but the macroscopic version below is equally general, the difference being one of bookkeeping.

  3. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In fact, Maxwell's equations were crucial in the historical development of special relativity. However, in the usual formulation of Maxwell's equations, their consistency with special relativity is not obvious; it can only be proven by a laborious calculation. For example, consider a conductor moving in the field of a magnet. [8]

  4. Inhomogeneous electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Inhomogeneous...

    Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...

  5. Matrix representation of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    One of the early uses of the matrix forms of the Maxwell's equations was to study certain symmetries, and the similarities with the Dirac equation. The matrix form of the Maxwell's equations is used as a candidate for the Photon Wavefunction. [8] Historically, the geometrical optics is based on the Fermat's principle of least time. Geometrical ...

  6. Heaviside–Lorentz units - Wikipedia

    en.wikipedia.org/wiki/Heaviside–Lorentz_units

    The electric and magnetic fields E and B have the same dimensions in the Heaviside–Lorentz system, meaning it is easy to recall where factors of c go in the Maxwell equation. Every time derivative comes with a 1 / c, which makes it dimensionally the same as a space derivative. In contrast, in SI units [E] / [B] is [c].

  7. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell .

  8. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    Localized time-varying charge and current densities can act as sources of electromagnetic waves in a vacuum. Maxwell's equations can be written in the form of a wave equation with sources. The addition of sources to the wave equations makes the partial differential equations inhomogeneous.

  9. Field equation - Wikipedia

    en.wikipedia.org/wiki/Field_equation

    Maxwell's equations for electromagnetism. Important equations derived from fundamental laws include: Navier–Stokes equations for fluid flow. As part of real-life mathematical modelling processes, classical field equations are accompanied by other equations of motion, equations of state, constitutive equations, and continuity equations.