Search results
Results From The WOW.Com Content Network
The k-medoids problem is a clustering problem similar to k-means. The name was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM (Partitioning Around Medoids) algorithm. [ 1 ] Both the k -means and k -medoids algorithms are partitional (breaking the dataset up into groups) and attempt to minimize the distance between points ...
Because the scale of the axes is arbitrary, the concept of an angle is not well-defined, and even on uniform random data, the curve produces an "elbow", making the method rather unreliable. [2] Percentage of variance explained is the ratio of the between-group variance to the total variance, also known as an F-test. A slight variation of this ...
Connectivity-based clustering, also known as hierarchical clustering, is based on the core idea of objects being more related to nearby objects than to objects farther away. These algorithms connect "objects" to form "clusters" based on their distance. A cluster can be described largely by the maximum distance needed to connect parts of the ...
The K-groups of finite fields are one of the few cases where the K-theory is known completely: [2] for , = (() +) {/ (), =,For n=2, this can be seen from Matsumoto's theorem, in higher degrees it was computed by Quillen in conjunction with his work on the Adams conjecture.
If each item to be sorted is itself an integer, and used as key as well, then the second and third loops of counting sort can be combined; in the second loop, instead of computing the position where items with key i should be placed in the output, simply append Count[i] copies of the number i to the output.
One object represents one unit. When the number of objects is equal to or greater than the base b, then a group of objects is created with b objects. When the number of these groups exceeds b, then a group of these groups of objects is created with b groups of b objects; and so on. Thus the same number in different bases will have different values:
In algebraic K-theory, the K-theory of a category C (usually equipped with some kind of additional data) is a sequence of abelian groups K i (C) associated to it.If C is an abelian category, there is no need for extra data, but in general it only makes sense to speak of K-theory after specifying on C a structure of an exact category, or of a Waldhausen category, or of a dg-category, or ...
The choosability (or list colorability or list chromatic number) ch(G) of a graph G is the least number k such that G is k-choosable. More generally, for a function f assigning a positive integer f ( v ) to each vertex v , a graph G is f -choosable (or f -list-colorable ) if it has a list coloring no matter how one assigns a list of f ( v ...