Ad
related to: examples of equivalent expressions
Search results
Results From The WOW.Com Content Network
In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of p {\displaystyle p} and q {\displaystyle q} is sometimes expressed as p ≡ q {\displaystyle p\equiv q} , p :: q {\displaystyle p::q} , E p q {\displaystyle {\textsf {E}}pq} , or p q ...
For example, is an expression, while the inequality is a formula. To evaluate an expression means to find a numerical value equivalent to the expression. [3] [4] Expressions can be evaluated or simplified by replacing operations that appear in them with their result.
Equivalence relations are a ready source of examples or counterexamples. For example, an equivalence relation with exactly two infinite equivalence classes is an easy example of a theory which is ω-categorical, but not categorical for any larger cardinal number.
A similar problem, involving equating like terms rather than coefficients of like terms, arises if we wish to de-nest the nested radicals + to obtain an equivalent expression not involving a square root of an expression itself involving a square root, we can postulate the existence of rational parameters d, e such that
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
However, the equality of two real numbers given by an expression is known to be undecidable (specifically, real numbers defined by expressions involving the integers, the basic arithmetic operations, the logarithm and the exponential function). In other words, there cannot exist any algorithm for deciding such an equality (see Richardson's theorem
In logic, a rule of replacement [1] [2] [3] is a transformation rule that may be applied to only a particular segment of an expression. A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system. Whereas a rule of inference is always applied to a ...
An XNOR gate can be implemented using a NAND gate and an OR-AND-Invert gate, as shown in the following picture. [3] This is based on the identity ¯ (¯) ¯ An alternative, which is useful when inverted inputs are also available (for example from a flip-flop), uses a 2-2 AND-OR-Invert gate, shown on below on the right.