When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Empirical distribution function - Wikipedia

    en.wikipedia.org/wiki/Empirical_distribution...

    In R software, we compute an empirical cumulative distribution function, with several methods for plotting, printing and computing with such an “ecdf” object. In MATLAB we can use Empirical cumulative distribution function (cdf) plot; jmp from SAS, the CDF plot creates a plot of the empirical cumulative distribution function.

  3. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    The inverse cumulative distribution function (quantile function) of the logistic distribution is a generalization of the logit function. Its derivative is called the quantile density function. They are defined as follows: (;,) = + ⁡ ().

  4. Raised cosine distribution - Wikipedia

    en.wikipedia.org/wiki/Raised_cosine_distribution

    The cumulative distribution function (CDF) is ... Linear Estimation and Probability Plotting Using MATLAB" (PDF). p. 116 ... Toggle the table of contents.

  5. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

  6. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    Weibull plot. The fit of a Weibull distribution to data can be visually assessed using a Weibull plot. [17] The Weibull plot is a plot of the empirical cumulative distribution function ^ of data on special axes in a type of Q–Q plot.

  7. Triangular distribution - Wikipedia

    en.wikipedia.org/wiki/Triangular_distribution

    This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]

  8. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    These values can be calculated evaluating the quantile function (also known as "inverse CDF" or "ICDF") of the chi-squared distribution; [24] e. g., the χ 2 ICDF for p = 0.05 and df = 7 yields 2.1673 ≈ 2.17 as in the table above, noticing that 1 – p is the p-value from the table.

  9. Erlang distribution - Wikipedia

    en.wikipedia.org/wiki/Erlang_distribution

    Because of the factorial function in the denominator of the PDF and CDF, the Erlang distribution is only defined when the parameter k is a positive integer. In fact, this distribution is sometimes called the Erlang- k distribution (e.g., an Erlang-2 distribution is an Erlang distribution with k = 2 {\displaystyle k=2} ).